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ABSTRACT 

In this paper, stress and strain distributions near a crack tip 
in a round compact tension specimen of elastic-plastic materials 
are obtained by finite element analyses.  The strain distributions 
are used to explore the use of the crack tip strain distributions 
for crack growth rate models due to stress corrosion cracking in 
unirradiated and irradiated steels with different yield stresses 
and hardening behaviors.  Both power-law hardening and 
perfectly plastic materials are considered.  The computational 
results indicate that the critical radial distance to the tip based 
on the crack tip opening displacement is outside of the 
Hutchinson-Rice-Rosengren (HRR) dominant zone for power-
law hardening materials in a round compact tension specimen 
under the stress intensity factor typically considered for stress 
corrosion cracking.  For both the power-law hardening and 
perfectly plastic materials, the computational results show that 
the strain distributions are different from those of the analytical 
solutions for the range of the radial distance larger than the 
critical radial distance based on the crack opening displacement 
within the plastic zones.  The computational results suggest that 
for the stress intensity factor typically considered for stress 
corrosion crack growth rate models, computational results are 
needed to estimate the strain rate for developing crack growth 
rate models to correlate to the experimental data.      

   

INTRODUCTION 
Andresen and Ford [1] developed a well-accepted, semi-

empirical model based on the oxide film rupture-slip 
dissolution mechanism to predict crack growth rate (CGR) in a 
boiling water reactor (BWR) system.  Passivity from oxide 
growth renders structural materials usable in high temperature 
water and its disruption by plastic strain is the origin of the 
material and water chemistry effects on environmentally 
assisted cracking.  By applying Faraday’s law and considering 
the competition between oxide film formation and oxide 
rupture at the crack tip, they expressed the crack growth rate 
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where M  and   are the atomic weight and the density of 

metal, respectively, z  is the change in charge due to oxidation, 
F  is Faraday’s constant, 0i  is the electrochemical current 

density of the new surface before the formation of an oxide film, 
m  is the exponent of current decay curve (showing the 
characteristic of oxide film formation), 0t  is the time period of 

oxide film formation, f  is the fracture strain of oxide film, 

and ct  (or dtd ct / ) is the strain rate at a characteristic 

distance 0r  ahead of the crack tip.  The strain rate ahead of the 

crack tip plays a key role in the crack growth rate.  However, it 
is difficult to precisely determine its value, and the location at 
which it should be evaluated.  Shoji et al. [2] expressed the 
crack tip strain rate in terms of the strain gradient at a critical 
radial distance to the crack tip.  The strain gradient ahead of the 
tip of a growing crack based on the available analytical 
solutions appears to be useful to examine the stress corrosion 
crack growth rate models based on the available experimental 
data.  

Hutchinson [3] and Rice and Rosengren [4] presented the 
asymptotic stress and strain fields near a stationary crack tip in 
power-law hardening materials under plane strain conditions.  
For growing cracks, asymptotic solutions were discussed by 
Gao and Hwang [5] and Pan [6].  Rice, Drugan, and Sham [7] 
presented the asymptotic crack tip fields for a growing crack in 
perfectly plastic materials.  For power-law hardening materials, 
Shoji et al. [2] presented crack growth rate models based on the 
analytical solutions for both stationary and growing cracks in 
power-law hardening materials. 

The crack tip strain rate for stress corrosion crack growth 
can be selected at the characteristic distance in the order of the 
crack tip opening displacement ahead of the tip of a growing 
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crack.  Therefore, the stress and strain distributions near the tip 
of a stationary crack in a round compact tension specimen of 
elastic-plastic materials under the stress intensity factor 
typically considered for estimating stress corrosion crack 
growth rate are first obtained by finite element analyses to 
examine the strain gradient ahead of the crack tip.  Our future 
work is to examine the strain gradient ahead of the tip for a 
growing crack.  

In this paper, power-law hardening and perfectly plastic 
materials are considered to represent unirradiated and irradiated 
steels with different yield stresses and hardening behaviors.  
The stress-strain curves for the power-law hardening and 
perfectly plastic materials for the finite element analyses are 
selected to match those of unirradiated and irradiated stainless 
steels at high temperature water as presented in Chopra and 
Rao [8].  The computational results are obtained to examine the 
question that the available asymptotic stress and strain solutions 
are applicable for the radial distance larger than the crack tip 
opening displacement below which the finite strain effects must 
be considered.  Finally, the implications of the computational 
results on the crack growth rate models of Shoji et al. [2] for 
estimation of stress corrosion crack growth rate are discussed.    
 

CRACK TIP STRESS AND STRAIN FIELDS FOR 
POWER-LAW HARDENING MATERIALS  

We consider an elastic power-law hardening material with 
the tensile stress-strain relation as 
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where   represents the tensile stress,   is the tensile strain, E  
represents the elastic modulus, 0  is the initial yield stress, n  

represents the hardening exponent, and   is a material 
constant.  Here, E/00   .  Since the elastic power-law 

hardening material is considered in this paper, the material 
constant   is taken as 1.  We also consider an elastic perfectly 
plastic material with the tensile stress-strain relation as  
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Two hardening materials with the hardening exponent 5n  
were chosen and two perfectly plastic materials were also 
chosen.  The values of the yield stress 0  are chosen to be 180 

MPa and 720 MPa to represent the yield stresses of unirradiated 
and irradiated stainless steels at warm water temperature, 
respectively (Chopra and Rao [8]).  The elastic modulus E  is 
taken as 150 GPa and the Poisson’s ratio   is selected to be 

0.3.  The power-law hardening and perfectly plastic stress-
strain relations are shown in Figure 1. 
 

For power-law hardening materials, the near tip stresses 
and strains well within the plastic zone close to the crack tip 
can be expressed in terms of the polar coordinates r  and   
centered at the crack tip as (Shih [9])  
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where ij  represent the stresses, ij  represent the strains, J  

represents the J  integral, nI  represents the integration 

constant, r  represents the radial distance to the tip, and ij~  and 

ij
~  are dimensionless functions of the angle   and the 

hardening exponent n  (Shih [9]). 

COMPUTATIONAL MODEL 
A round compact tension specimen is considered in this 

investigation.  Figure 2(a) shows a schematic of a round 
compact tension specimen.  The specimen has the thickness of 
8 mm.  A fatigue crack with the length of 0.5 mm from the 
machined notch tip is considered.  Therefore, the total crack 
length is 7.5 mm.  The remaining ligament is therefore 8.5 mm 
based on the dimensions shown in Figure 2(a).  Figures 2(b) 
and 2(c) show a half two-dimensional finite element model for 
the round compact tension specimen and a close-up view of the 
mesh near the crack tip, respectively.  The commercial finite 
element program ABAQUS was employed to perform the 
computations.  Second-order elements CPE8R with reduced 
integration were used for the finite element models and selected 
CPE8H elements with the hybrid formulation were used near 
the tip for better numerical stability.  The total numbers of the 
elements for the half specimen are 1,507 for the power-law 
hardening materials and 1,421 for the perfectly plastic 
materials.  The smallest element sizes in the radial direction are 
17.6 nm and 57.7 nm for the power-law hardening and perfectly 
plastic materials, respectively.  A load of 205.8 N/m is applied 
through a rigid bar connection to the center of the pin hole of 
the specimen such that the stress intensity factor IK  for the 

crack is 15 mMPa  which is a typical value considered for 
examining stress corrosion crack growth rate.  
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COMPUTATIONAL RESULTS 
Figures 3(a), 3(b) and 3(c) show the normalized Mises stress 

0/ e , the normalized opening strain 022 / , and the 

normalized effective plastic strain 0/ p
e  directly ahead of the 

tip, respectively, as functions of the radial distance to the tip in 
a logarithmic scale for the materials with 0 180 MPa.  As 

shown in Figure 3(a) for the perfectly plastic material, the 
normalized Mises stress increases and then becomes a constant 
as the radial distance to the tip decreases.  This is in agreement 
with the theoretical results.  For the power-law hardening 
material, the normalized Mises stress increases as the radial 
distance decreases.  The computational results for the plastic 
zone size pR  ahead of the crack tip are about 210 m and 

270 m  for the power-law hardening and perfectly plastic 

materials, respectively, which are small compared with the 
crack length and remaining ligament of the round compact 
tension specimen.   
 

When the normalized Mises stresses are plotted in the 
logarithmic scale for a given range of the radial distance and 
the stress-distance curve becomes linear, the Mises stress can 
be expressed in the form of a power function of the radial 
distance for a given range of the radial distance.  As shown in 
Figure 3(a) for the power-law hardening material, the slope of 
the normalized Mises stress continues to change as the radial 
distance decreases.  Since the stress distribution very close to 
the crack tip may not be accurate, the portion of the stress curve 
in the range of 1 to 0.1 m is used to determine the exponent of 

the power function or the singularity exponent of the crack tip 
stress field.  The singularity exponent for the stress with respect 
to the radial distance is determined for this range as 16.0  
which is in agreement with the HRR solution of 

16.0)1/(1  n , for the power-law hardening material as 

listed in Equation (4).  For the range of the radial distance from 
1 m  to the boundary of the plastic zone, if a linear fitting 

curve is placed, the value of the singularity exponent will be 
much smaller than that of the HRR solution of 

16.0)1/(1  n . 

 
Figure 3(b) shows the normalized opening strain 22  

directly ahead of the tip for both the power-law hardening and 
perfectly plastic materials.  As shown in Figure 3(b), the slope 
of the normalized strain continues to change as the radial 
distance decreases.  The portion of the strain curve in the range 
of 1 to 0.1 m is used to determine the exponent of the power 

function or the singularity exponent of the crack tip strain field.  
The singularity exponent for the strain with respect to the radial 
distance is determined for this range as 69.0  which is close to 
the theoretical solution of 83.0)1/(  nn , for the power-

law hardening material as listed in Equation (5).  For the 
perfectly plastic material, the slope for the strain distribution 

for this range is 22.0  whose value is much small than that of 
the theoretical solution of 1  which could occur well within 
the plastic zone (Shih [9]).  The results for the normalized 

effective plastic strain 0/ p
e  shown in Figure 3(c) are quite 

similar to those shown in Figure 3(b) and will not be discussed 
further. 
 

An estimation of the crack tip opening displacement t  for 

power-law hardening materials was given by Shih [9].  Under 
plane strain small-scale yielding conditions, the relation can be 
written as 
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where nd  represents the coefficient which is a function of the 

hardening exponent n  and the ratio E/0  when the crack tip 

opening displacement is evaluated well within the HRR 
dominant zone (with the HRR dominant zone must be an order 
of magnitude larger than the crack tip opening displacement).  
For the power-law hardening materials, nd  for the materials 

with 0  180 MPa and 720 MPa are estimated as 0.28 and 

0.37, respectively.  For the perfectly plastic materials, nd  is 

0.78.  For the given value of IK = 15 mMPa , the values of 

the crack tip opening displacement t  are estimated as 2.1 and 

5.9 m , respectively, for the power-law hardening and 

perfectly plastic materials with 0 180 MPa.  Since the 

normalized Mises stress and opening strain are plotted in a 
logarithmic scale, the normalized Mises stress and strain at the 
radial distance of 2.1 m  are outside of the HRR dominant 

zone with the size of less than 1 m  for the power-law 

hardening material. 
 
Figures 4(a), 4(b) and 4(c) show the normalized Mises stress 

0/ e , the normalized opening strain 022 / , and the 

normalized effective plastic strain 0/ p
e  directly ahead of the 

tip, respectively, as functions of the radial distance to the tip in 
a logarithmic scale for the materials with 0 720 MPa.  As 

shown in Figure 4(a) for the perfectly plastic material, the 
normalized Mises stress increases and then becomes a constant 
as the radial distance to the tip decreases.  For the power-law 
hardening material, the normalized Mises stress increases as the 
radial distance decreases.  The computational results for the 
plastic zone size pR  ahead of the crack tip are 13 m and 17 

m  for the power-law hardening and perfectly plastic 

materials, respectively.  The general trends shown in Figures 
4(a), 4(b) and 4(c) are similar to those shown in Figures 3(a), 
3(b) and 3(c).  The estimations of the crack tip opening 
displacement t  for the power-law hardening and perfectly 
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plastic materials with 0 720 MPa are 0.7 and 1.5 m , 

respectively, which are closer to the plastic zone boundaries 
when compared to those for the materials with 0  180 MPa.  

It should be mentioned that irradiated steels have much higher 
yield stresses.  
 

Since the strain gradient at the critical distance to the tip 
can be used for correlating crack growth rate as indicated in 
Shoji et al. [2], the values of the strain 22  and strain gradient 

drd /22  at the radial distance of t2  are listed in Table 1 for 

comparison.  It should be noted the large deformation effects 
due to crack tip blunting must be accounted for in general 
within the radial distance of t2  to the tip.  It also should be 

mentioned that the HRR dominant zones are smaller than the 
values of t2  for the power-law hardening materials that we 

considered in this paper.  Therefore, Equation (6) may not be 
valid for the given stress intensity factor.  However, Equation 
(6) may give reasonable estimations.   

  
As listed in the table based on Equation (6), the value of 

the crack opening displacement t  for the perfectly plastic 

material is larger than that for the power-law hardening material 
for a given yield stress 0 .  However, the opening strain 22  

for the perfectly plastic material is smaller than that for the 
power-law hardening material for a given yield stress 0  at the 

radial distance of t2 .  The strain gradient shows the similar 

trend at the radial distance of t2 .  The strain gradient for the 

perfectly plastic material with the yield stress 0 720 MPa 

(representing an irradiated material with a high yield stress and 
low hardening) is about 200% of the value of the strain gradient 
for the power-law hardening material with the yield stress 

0  180 MPa (representing an unirradiated material with a 

low yield stress and high hardening) based on the 
computational results.  The numerical results suggest that when 
the strain gradient or strain rate are used to correlate the stress 
corrosion crack growth rate based on the crack growth rate 
models of Andresen and Ford [1] and Shoji et al. [2], different 
yield stresses and hardening capabilities due to irradiation 
should have significant effects on the correlation.   
 

CONCLUSIONS 
In this paper, stress and strain distributions near a crack tip 

in a round compact tension specimen of elastic-plastic materials 
are obtained by finite element analyses.  The strain distributions 
are used to explore the use of the crack tip strain distributions 
for crack growth rate models due to stress corrosion cracking in 
unirradiated and irradiated steels with different yield stresses 
and hardening behaviors.  Both power-law hardening and 
perfectly plastic materials are considered.  The computational 
results indicate that the critical radial distance to the tip based 
on the crack tip opening displacement is outside of the HRR 

dominant zone for power-law hardening materials in a round 
compact tension specimen under the stress intensity factor 
typically considered for stress corrosion cracking.  For both the 
power-law hardening and perfectly plastic materials, the 
computational results show that the strain distributions are 
different from those of the analytical solutions for the range of 
the radial distance larger than the critical radial distance based 
on the crack opening displacement within the plastic zones.  
The computational results suggest that for the stress intensity 
factor typically considered for stress corrosion crack growth 
rate models, computational results are needed to estimate the 
strain rate for developing crack growth rate models to correlate 
to the experimental data. 
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Table 1. The crack tip opening displacement t , the opening 

strain 22 , and the strain gradient drd /22  at the radial 

distance of t2  under the stress intensity factor of 15 

mMPa . 
 

0  

(MPa) 

n t  

( m ) 
22  

(at tr 2 ) 

drd /22  

(1/mm)  
(at tr 2 ) 

180 5 2.1 0.00611 0.461 

180   5.9 0.00433 0.0688 

720 5 0.7 0.0149 2.79 

720   1.5 0.0125 0.990 
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Figure 1. The elastic power-law hardening and perfectly plastic 
stress-strain relations considered in this investigation. 
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Crack Tip

 
(c) 

Figure 2.  (a) A schematic of a round compact tension specimen 
with the dimensions expressed in mm, (b) a half two-
dimensional finite element model for a round compact tension 
specimen, and (c) a close-up view of the mesh near the crack 
tip. 
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Figure 3.  (a) The normalized Mises stress 0/ e , (b) the 

normalized opening strain 022 / , and (c) the normalized 

equivalent plastic strain 0/ p
e  directly ahead of the tip as 

functions of the radial distance to the tip for the power-law 
hardening and perfectly plastic materials with the yield stress 

0  180 MPa. 
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Figure 4.  (a) The normalized Mises stress 0/ e , (b) the 

normalized opening strain 022 / , and (c) the normalized 

equivalent plastic strain 0/ p
e  directly ahead of the tip as 

functions of the radial distance to the tip for the power-law 
hardening and perfectly plastic materials with the yield stress 

0  720 MPa. 
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